布里渊动态光栅原理及其在光纤传感中的应用
董永康 周登望 滕雷 姜桃飞 陈曦
Principle of Brillouin dynamic grating and its applications in optical fiber sensing
Dong Yong-Kang Zhou Deng-Wang Teng Lei Jiang Tao-Fei Chen Xi
引用信息 Citation: Acta Physica Sinica, 66, 075201 (2017) DOI: 10.7498/aps.66.075201
在线阅读 View online: http://dx.doi.org/10.7498/aps.66.075201
当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I7
您可能感兴趣的其他文章
Articles you may be interested in
基于领结型多孔光纤的双芯太赫兹偏振分束器
Dual-core terahertz polarization splitter based on porous fibers with near-tie units
物理学报.2017, 66(2): 024209 http://dx.doi.org/10.7498/aps.66.024209
通道调制型偏振成像系统的波段宽度限制判据
Imaging spectral bandwidth criterion equation of channeled modulated polarization imaging system
物理学报.2016, 65(7): 074210 http://dx.doi.org/10.7498/aps.65.074210
等离子体密度对激光拉曼放大机理的影响
Plasma density effect on backward Raman laser amplification
物理学报.2015, 64(10): 105201 http://dx.doi.org/10.7498/aps.64.105201
一种带葡萄柚空气孔的高双折射 ZrF$_4$-BaF$_2$-LaF$_3$-AlF$_3$-NaF 光子晶线光纤
Highly birefringent ZrF$_4$-BaF$_2$-LaF$_3$-AlF$_3$-NaF photonic quasi-crystal fiber with twin grapefruits holes
物理学报.2014, 63(14): 144202 http://dx.doi.org/10.7498/aps.63.144202
一种新型高双折射光子晶体光纤特性研究
Investigation of a new kind of high birefringence photonic crystal fiber
物理学报.2013, 62(8): 084215 http://dx.doi.org/10.7498/aps.62.084215
物理学报
第 66 卷 第 7 期 2017 年 4 月

目 次

专题：光纤传感

070601 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器

070702 匀光相移光纤光栅分布式应变与应变点精确定位传感研究

070703 基于光纤微结构加工和敏感材料物理融合的光纤传感技术

070704 新型长周期光纤光栅的设计与研制进展

070705 分立式与分布式光纤传感关键技术研究进展

070706 基于相干光时域反射型的光纤分布式声敏传感技术

070707 相位敏感型光时域反射传感系统光学背景噪声的产生机理及其抑制方法

070708 分立式与分布式光纤传感关键技术研究进展

070709 基于全相位滤波技术的光纤表面等离子体共振传感解调算法

070710 光纤超声传感器及应用研究进展

070711 基于分光光度法痕量重金属传感模型和影响因素的研究

070712 长距离分布式光纤传感技术研究进展

070713 面向地壳形变观测的超高分辨率光纤应变传感系统

070714 基于光纤光栅的冲击激励声发射响应机理与定位方法研究

070715 Airy 光纤：基于阵列波导耦合的光场调控方法

070716 光纤光热干涉气体检测技术研究进展

070717 布里渊动态光栅原理及其在光纤传感中的应用

总论

070301 双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象

070302 中纬度地区电离层偶发 E 层对量子卫星通信性能的影响

070501 基于递推-变换方法计算圆柱面网络的等效电阻及复阻抗

070701 γ-α 相变中不同晶界特征下铁素体生长形貌的相场模拟
专题: 光纤传感

布里渊动态光栅原理及其在光纤传感中的应用

董永康† 周登望 滕雷 姜桃飞 陈曦

(哈尔滨工业大学可调谐激光技术国家级重点实验室, 哈尔滨 150001)

(2016年10月9日收到; 2016年11月29日收到修改稿)

自从2007年布里渊动态光栅被首次提出用于实现光存储以来, 该技术得到了国际上的广泛关注和研究。布里渊动态光栅本质上是由相干声波场激发的折射率光栅, 一般情况下两束抽运光 (频率差等于光纤的布里渊频移) 以相同的偏振态从光纤两端注入到光纤中, 通过受激布里渊散射效应激发出相干声波场, 即形成布里渊动态光栅。光纤布里渊动态光栅因具有全光产生、参数灵活可控的优点, 已被广泛研究应用于光纤传感、光纤特性表征、光存储、全光信号处理、微波光子学和高精度光谱分析。本文分析布里渊动态光栅产生和探测原理, 重点探讨在高性能分布式光纤传感上的应用, 这些应用包括高灵敏度温度和应变分布式传感、温度和应变同时解调、分布式横向压力传感、分布式静压力 (气压或液压) 传感、高空间分辨率分布式传感和高精度光谱分析。

关键词: 受激布里渊散射, 布里渊动态光栅, 光纤传感

PACS: 52.38.Bv, 42.79.Dj, 07.07.Df

DOI: 10.7498/aps.66.075201

1 引言

分布式布里渊光纤传感最早于20世纪80年代末期提出。这种技术提出的最初目的是发展一种新型的光时域反射计用于测量光纤的损耗[1]。很快人们发现它还可以用于传感, 因为布里渊散射对温度和应变都很敏感[2-4]。在传感方案上, 主要包括布里渊光时域分析 (Brillouin optical time-domain analysis, BOTDA) 和布里渊光时域反射 [5,6]。布里渊光相关域分析和布里渊光相关域反射 [7,8]。相关域布里渊传感技术的主要优势是具有高达1 mm的空间分辨率, 但是由于逐点测量导致存在时间间隔和测量速度较短的问题, 时域布里渊传感技术近年来发展迅速, 尤其是BOTDA技术在空间分辨率、测量距离和测量时间上都有较大的进步, 目前空间分辨率可以达到2 cm [9], 测量距离达到150 km [10], 并且测量时间大为减小, 可以实现kHz量级的动态测量 [11]。这些技术的进步大幅拓展了BOTDA的应用领域, 使其可以应用于石油天然气管道和存储罐的漏油和变形监测, 精密仪器和电子设备的电阻和应力监测, 辽宁和田野地高压电缆的温度和应变监测, 地质灾害的分布式监测, 钢梁、大坝和隧道等大型建筑物的结构健康监测, 飞行器和航天器的飞行状态监测以及火灾报警等。

但是, 传统的分布式布里渊光纤传感仍然有些局限, 比如测量的物理量仅限于温度和应变, 而且测量的精度限制在1 ℃或20 με。近年来, 新型的布里渊动态光栅 (Brillouin dynamic grating, BDG) 技术引起了人们的极大兴趣, 可以实现更高精度和多参量的分布式光纤传感。2007年, 美国罗切斯特大学Boyd等[12]在《Science》上撰文首次提出采用BDG实现光存储, 该方法的思想是把光信号存储到声波中 (即布里渊动态光栅), 然后通过读取光脉冲再把声波信号还原成光信号, 从而实现了光信号的存储。2012年, 瑞士联邦工学院的Thevenaz课题组研究

本文从理论上探讨布里渊动态光栅产生和探测原理, 并综述近些年该技术在高性能分布式光纤传感方面应用的研究进展。

2 理论分析

BDG 本质上是由相干声波场激发的折射率光栅, 如图 1 所示, 一般情况下两束抽运光 (抽运光 1 和抽运光 2, 频率差等于布里渊频移) 以相同的偏振态 (x-pol.) 入射到光纤中, 当抽运光与抽运光 1 的频率差 (正比于光纤的双折射) 满足相位匹配条件时, 就会被 BDG 反射形成反射光。图 1 还给出了四束光波的频率关系, 由于 BDG 和高频的抽运光 1 同方向移动的光栅, 反射光和探测光之间会有一个多普勒频移, 数值上等于布里渊频移。

考虑到慢包络幅值近似, 我们可以用由四束光波和一个声波场组成的耦合波方程组来描述 BDG 的激发和探测过程 [22]:

\[
\frac{\partial}{\partial z} + \frac{n_x}{c} \frac{\partial}{\partial t} E_1 = i g_0 \rho E_2 - \frac{\alpha}{2} E_1, \quad (1a)
\]
\[
\frac{\partial}{\partial z} + \frac{n_x}{c} \frac{\partial}{\partial t} E_2 = i g_0 \rho^* E_1 - \frac{\alpha}{2} E_2, \quad (1b)
\]
\[
\frac{\partial}{\partial z} + \frac{n_y}{c} \frac{\partial}{\partial t} E_3 = i g_0 \rho^* E_4 e^{i \Delta k z} - \frac{\alpha}{2} E_3, \quad (1c)
\]
\[
\frac{\partial}{\partial z} + \frac{n_y}{c} \frac{\partial}{\partial t} E_4 = i g_0 \rho E_3 e^{-i \Delta k z} - \frac{\alpha}{2} E_4. \quad (1d)
\]

\[
\left(\frac{\partial}{\partial t} + \frac{\Gamma_B}{2} \right) \rho = i g_0 \left(E_1 E_2^* + E_3 E_4 e^{i \Delta k z} \right), \quad (1e)
\]

其中, \(E_j (j = 1:4) \) 是光波的电场强度; \(\rho \) 为声波场强度; \(n_x \) 和 \(n_y \) 分别为光纤慢轴和快轴的折射率; \(g_0 \) 为光波场间的耦合系数; \(g_0 \) 为声光耦合系数; \(g_B = 4g_0 \gamma_B / \Gamma_B \) 光纤的布里渊倍增因子; \(\alpha \) 为光纤的吸收系数; \(\Delta k \) 为四束光波的相位失谐量。

对于由连续抽运光产生的稳态均匀型 BDG, 我们可以使用简化模型得到 BDG 反射光 \(E_4 \) 的解析解, 忽略抽运抽空作用, 抽运光 \(E_1 \) 和 \(E_2 \) 可以认为是常数, 其他光波沿光纤的衰减项和时间的求导
项可以忽略, 则方程组 (1) 可以简化为:
\[
\begin{align*}
\frac{\partial}{\partial z} E_3 &= -ig_0^* E_4 e^{i\Delta k z}, \\
\frac{\partial}{\partial z} E_4 &= ig_0 E_3 e^{-i\Delta k z}, \\
\frac{1}{2} \rho &= ig_a E_1 E_2^*.
\end{align*}
\] (2a)

(2b)

求解方程组 (2) 可得:
\[
\begin{align*}
E_3(z) &= E_3(L) \cdot \frac{2g \cosh(gz) - i\Delta k \sinh(gz)}{2g \cosh(gL) - 2i\Delta k \sinh(gL)} \\
&\quad \times e^{-i\Delta k(z-L)/2}, \\
E_4(z) &= E_3(L) \cdot \frac{2K_2 \sinh(gz)}{2g \cosh(gL) - 2i\Delta k \sinh(gL)} \\
&\quad \times e^{-i\Delta k(z+L)/2}.
\end{align*}
\] (3a)

(3b)

对于稳态 BDG, 它的反射率为
\[
R = \frac{|E_4(L)|^2}{|E_3(L)|^2} = \frac{\sinh^2(gL)}{\cosh^2(gL) - \Delta k^2/(4K_1 K_2)}.
\] (4)

首先, 我们对 BDG 反射谱的数值仿真结果和解析解进行对比分析, 采用保偏光纤作为 BDG 产生的介质, 具体仿真参数列于表 1.

表 1 仿真参数
Table 1 Simulation parameters.

<table>
<thead>
<tr>
<th>名称</th>
<th>符号</th>
<th>数值</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump1</td>
<td>P_1</td>
<td>0.1 W</td>
</tr>
<tr>
<td>Pump2</td>
<td>P_2</td>
<td>0.1 W</td>
</tr>
<tr>
<td>Pump3</td>
<td>P_3</td>
<td>0.01 W</td>
</tr>
<tr>
<td>光纤长度</td>
<td>L</td>
<td>1.0/0.5 m</td>
</tr>
<tr>
<td>布里渊增益线宽</td>
<td>(I_B/2\pi)</td>
<td>30 MHz</td>
</tr>
<tr>
<td>布里渊增益系数</td>
<td>(g_B)</td>
<td>2.5 \times 10^{-11} \text{ m-W}^{-1}</td>
</tr>
<tr>
<td>声子寿命</td>
<td>(\tau_p)</td>
<td>5.3 ns</td>
</tr>
<tr>
<td>有效模场面积</td>
<td>(A_{\text{eff}})</td>
<td>50 \text{ (\mu)m}^2</td>
</tr>
<tr>
<td>慢轴 (x) 折射率</td>
<td>(n_x)</td>
<td>1.4686</td>
</tr>
<tr>
<td>慢轴 (y) 折射率</td>
<td>(n_y)</td>
<td>1.4683</td>
</tr>
</tbody>
</table>

BDG 归一化的反射谱如图 2 (a) 所示, 黑色实线和方块点线分别对应长度 0.5 m BDG 反射谱的解析解和数值仿真结果, 蓝色实线和三角点线分别对应长度 1.0 m BDG 反射谱的解析解和数值仿真结果, 可以看出, 解析解和数值仿真结果相符合. BDG 反射谱半高全宽 (full-width at half-maximum, FWHM) 和长度之间的关系如图 2 (b) 所示, 由解析方法所得数据 (蓝色方块, 对数坐标) 显示, 随着 BDG 长度从 0.01 m 增加到 1000 m, 其反射谱的线宽会从 10 GHz 量级逐渐减小到亚 MHz 量级.
传播方向相反, 探测光就会在光栅上发生相干反斯托克斯散射, 反射光的频率比探测光高一个布里渊频移。相干反斯托克斯过程会加强已经产生的光栅, 而相干反斯托克斯过程会消耗已经产生的光栅。

当探测光和抽运光1(这里假设抽运光1与探测光的传播方向一样)满足相位匹配条件的时候, 探测光就会在光栅上得到最大的反射, 其中相位匹配条件为

\[\Delta \nu_{\text{Bire}} = \Delta n v / n_g, \] \((5) \)

其中, \(\Delta \nu_{\text{Bire}} \) 是双折射频移, 即获得最大反射率时探测光与抽运光1之间的频差, \(\Delta n \) 是保偏光纤的相双折射, \(n \) 是光纤的群折射率, \(\nu \) 是探测光的频率。\((5) \) 式表明双折射频移和保偏光纤双折射之间存在线性关系, 通过激发和探测BDG就可以测量双折射频移, 从而实现保偏光纤双折射的测量。

一般保偏光纤中的双折射频移在40—90 GHz之间, 这个值会随着光纤的种类不同而有所变化。为了避免在激发BDG时发生抽运抽空效应, 从而实现长距离光纤的测量, 一般采用如图3所示的激发和探测方案。两束抽运光包括脉冲抽运光1和连续抽运光2, 采用脉冲抽运光1可以有效减弱抽运抽空效应, 同时为了有效激发BDG, 脉冲宽度一般需要大于声子寿命(\(\sim 10 \) ns)。在脉冲抽运光1之后, 紧接着注入探测脉冲来读取光栅, 通过扫描探测光的频率就可以获得BDG的反射谱和双折射频移, 其中测量空间分辨率由探测光脉冲宽度决定。

图4是采用2 ns探测脉冲测量的两种典型BDG反射谱(偏置于双折射频移, 即谱的中心位于零频率处), 2 ns的脉冲对应了20 cm的空间分辨率。图4(a)对应了双折射均匀区域, 也就是说在20 cm范围内光纤双折射变化很小, 因此测量的结果与仿真符合得很好; 但是如果20 cm范围内双折射有较大的起伏, 就会导致BDG反射谱产生非均匀展宽, 典型结果如图4(b)所示。

图5(a)显示了一段500 m保偏光纤双折射分布式测量结果, 该光纤缠绕在直径为15.6 cm(周长49 cm)的卷轴上。从图中可以看出双折射沿光纤纵向呈现不均匀分布, 变化范围是3.6869—3.5772 \(\times 10^{-4} \), 起伏达3%。这种双折射不均匀分布有着多种因素, 可能包括光纤预制棒材料的不均匀, 光纤拉制过程不均匀受力, 光纤涂覆层的不均匀, 同时光纤在绕制时不均匀纵向拉力和横向压力也会导致双折射的起伏, 从图5(b)中可以很清楚地看到对应于卷轴周长49 cm的振荡。
3.2 高灵敏度温度和应变测量

研究表明，外界的温度变化和对光纤轴向施加的应变都会导致光纤双折射的变化。通过对保偏光纤中双折射频移的测量可以进行温度和应变的监测。

图6给出了不同温度下的布里渊光栅反射谱及双折射频移随温度的变化关系。图6(a)中的BDG反射谱呈高斯型分布，FWHM谱宽约为640 MHz。图6(b)中的双折射频移与温度的变化关系给出了温度系数为$
\Delta \nu_{\text{Bire}} = -54.38 \text{ MHz/}^\circ\text{C}$。由于温度的升高会使附加的应力得到释放，减小了光纤的双折射，从而得到一个负温度系数。
图7给出了这种熊猫型保偏光纤在不同应变下BDG反射谱及其双折射频移随应变的变化关系。图7(b)中的双折射频移与应变的变化关系表明双折射频移与应变也有很好的线性关系，其应变系数为$C_{Bire}^\varepsilon = 1.13 \text{ MHz/} \mu\text{e}$，对光纤施加纵向的应力加强了应力棒的附加应力，增加了光纤的双折射，因而得到一个正应变系数。

一般单模光纤中的布里渊频移的温度系数和应变系数分别为$C_B^T = 1.12 \text{ MHz/} ^\circ\text{C}$和$C_B^\varepsilon = 0.0482 \text{ MHz/} \mu\text{e}$。由此我们可以看出保偏光纤中的双折射频移的温度系数和应变系数分别是布里渊频移的50倍和20倍，因此，基于BDG测量双折射频移的温度和应变传感器具有比传统布里渊散射传感器更高的灵敏度。

3.3 温度和应变同时解调技术

对于传统的布里渊光纤传感器而言，温度和应变的测量会存在串扰的问题，即温度和应变都会导致布里渊频移的变化，因此无法准确知道待测的温度或应变。一般情况下，需要再引入一个独立的可测量的量进行温度和应变的解调从而实现温度和应变的测量。以前文献中曾报道过用布里渊散射功率作为第二个测量的量同时进行温度和应变的解调，但是测量精度被大幅降低。在这里我们看到，保偏光纤的双折射频移可以作为第二个测量的量来实现温度和应变的同时测量。而且，由于双折射频移具有负温度系数，因而可以实现高精度的温度和应变解调[17]。

在受外界的温度和应变变化条件下，布里渊频移和双折射频移$\Delta\nu_B$和$\Delta\nu_{Bire}$可以表示为

$$
\Delta\nu_B = C_B^\varepsilon \Delta\varepsilon + C_B^T \Delta T,
\Delta\nu_{Bire} = C_{Bire}^\varepsilon \Delta\varepsilon + C_{Bire}^T \Delta T,
$$

其中，$\Delta\varepsilon$ 和ΔT是施加的应变和温度改变量，C_B^ε和C_B^T分别是布里渊频移的应变系数和温度系数，C_{Bire}^ε和C_{Bire}^T分别是双折射频移的应变系数和温度系数。对方程(6)进行求解可以唯一地得到温度和应变，即

$$
\left[\begin{array}{c}
\Delta\varepsilon \\
\Delta T
\end{array}\right] = \frac{1}{C_B^\varepsilon C_{Bire}^T - C_B^T C_{Bire}^\varepsilon} \left[\begin{array}{cc}
C_{Bire}^\varepsilon & -C_B^T \\
-C_B^\varepsilon & C_B^T
\end{array}\right] \left[\begin{array}{c}
\Delta\nu_B \\
\Delta\nu_{Bire}
\end{array}\right],
$$

![图8 传感光纤布局](image)

实验上测到的布里渊频移和双折射频移如图9(a)所示，我们可以看到基于布里渊频移和双折射频移方法均具有20 cm的空间分辨率。利用所测的布里渊频移、双折射频移以及它们的温度和应变系数，我们可以同时得到光纤上的温度和应变分布。其结果如图9(b)所示，很清楚地可以看出传感光纤上的温度和应变分布被互相解调出来，其中只有在有应变和无应变、加热和室温的交界处存在一些误差，这些误差是由于系统的空间分辨率限制产生的。

![图9 (a) 测量的布里渊频移和双折射频移; (b) 解调后的温度和应变分布](image)
3.4 分布式横向压力传感

木结构和大型机械在建造和使用过程中难免会受到自重和外部撞击产生的横向压力的作用，因此，实际生产中需要一种可靠、高效的横向压力传感器。传统的光纤横向压力传感器主要是基于光栅(FBG)技术和干涉仪技术，这类横向压力传感器制作简单，具有很高的灵敏度。但是现有的光纤横向压力传感器是点式传感器，不能进行分布式测量，不能同时获得测试空间内的全部信息。

当传感光纤受到横向压力作用时，由于弹性效应，光的双折射会发生变化。利用布里渊动态光栅技术测量光纤双折射的变化可以实现对横向压力的测量。图10所示为我们自行设计的横向压力施加平台。实验光纤包括传感光纤和支撑光纤，两根光纤平行放置，其上覆盖一个20 cm长的玻璃板，在玻璃板上放置不同质量的砝码来施加横向压力。传感光纤和支撑光纤是同一种型号，砝码放置在两根光纤中间以保证它们均匀受力。传感光纤的两端固定在可转动的基座上，通过旋转基座来调整施加的横向压力与光纤主轴之间的相对方向[21]。

图10 横向压力施加装置

Fig. 10. Setup with load weight applied.

图11 双折射频移与横向力的关系

(a) 施加不同压力方向; (b) 施加不同压力值

Fig. 11. Relations between BireFS and transverse load: (a) Various load direction; (b) various load weight.

图11为双折射频移变化量与不同横向力之间关系。通过旋转基座可以调整施加的横向力与光纤主轴之间的相对方向。测量结果如图11(a)所示，从图中可以看出双折射频移变化量与压力方向呈正弦变化关系。当压力方向与光纤慢轴方向一致时(即图中的50°或230°)，双折射增加量最大;当压力方向与光纤快轴方向一致时(即图中的140°或320°)，双折射减小量最大。图11(b)所示为当压力方向与光纤慢轴(或快轴)方向一致时，双折射频移变化量与不同横向力之间的线性关系。当沿光纤快轴方向施加横向力时，横向力灵敏度为-6.217 GHz/N·mm⁻¹，而沿光纤慢轴方向施加压力是，灵敏度为6.28 GHz/N·mm⁻¹。结合双折射频移最小测量标准差5 MHz，可以得到最大测量精
度为 $0.8 \times 10^{-3} \text{ N/mm}$。

图 12 为横向压力分布测量结果。其中绿线和红线分别表示施加压力前后的双折射测量结果，通过这两个结果做差处理就可以得到由压力引起的双折射变化，从而解调出的分布式横向压力。如蓝线所示，在 1 m 处附近有一段 20 cm 的光纤沿着慢轴方向施加一个压力，在 3 m 处附近有一段 20 cm 的光纤沿着快轴方向施加一个压力，两个压力均为 $2.3 \times 10^{-2} \text{ N/mm}$。从图中可以清楚地看到施加横向压力的位置、大小和方向。

在 1 m 处附近有一段 20 cm 的光纤沿慢轴施加一个压力，在 3 m 处附近有一段 20 cm 的光纤沿快轴施加一个压力，两个压力均为 $2.3 \times 10^{-2} \text{ N/mm}$。从图中可以清楚地看到施加横向压力的位置、大小和方向。

3.5 分布式静压力传感

目前，光纤静态压力（气压或液压）传感器主要包括基于 FBG 技术、法布里-罗赫 (FP) 技术或光纤干涉仪技术等方案，但是主要问题是无法实现分布式测量。分布式气压传感器在非常重要的应用，尤其是在油井的检测系统。下井环境比较恶劣，温度可达几百摄氏度，压力可达 100 MPa。克服温度的影响精确测量分布式压力对于提高采油效率着重要的意义。对于高双折射的偏光光纤，压力的作用下，光纤双折射会发生改变，通过 BDG 技术测量受压区域双折射的变化，可以进而对压力变化进行探测。

在进行气压传感实验时，我们采用的测试光纤为图 13 所示的保偏光子晶体光纤 (polarization-maintaining photonics crystal fiber, PM-PCF) [22]。这种光纤具有多孔结构，更容易受气流影响而产生形变，从而引起双折射发生较大的改变。它由纯二氧化硅材料构成，相比于传统的应力型保偏光纤（比如熊猫型和领结型）具有更低的双折射温度系数。因此，采用 PM-PCF 作为气压传感光纤，一方面可以获得较高的压力灵敏度，另一方面可以尽量减小温度对压力测量的影响。图 13 所示为 4 m PM-PCF 光纤的布局，其中有两段 20 cm 的加压段、一段 20 cm 的加热段，其他部分处在室温和松弛状态。利用图 13 (b) 中所示的高压气池对加压部分光纤施加不同的气压进行气压传感实验，表热段改变温度讨论温度对测试的影响。

图 14 所示为 PM-PCF 光纤双折射频移与温度的变化关系，其中温度变化范围是 $-40 \degree C$—$70 \degree C$。从图中可以看出，在 110 °C 的变温条件下，双折射频移仅改变 180 MHz，对比而言，传统的熊猫型光纤 4 °C 的温度变化就会导致双折射频移改变超过 200 MHz [17]。PM-PCF 光纤的双折射对温度不敏感特性可以有效减小在测量过程中温度变化对气压测量带来的误差。图 15 给出了双折射频移与气压的变化曲线（气压变化范围为 0—1.1 MPa），结果表明双折射频移与气压有着很好的线性关系，拟合的线性系数为 199 MHz/MPa。一般通过 BDG 反射谱测量的双折射频移误差大约为 5 MHz，因此气压的测量精度可达 0.02 MPa。然而，结合图 14 的
数据可以看出, 尽管 PM-PCF 光纤的双折射对温度不敏感, 但是 110 °C 的变温也会导致大约 1 MPa 的测量误差, 因此为了精确测量压力就必须进行温度补偿。

图 14 不同温度下的双折射频移变化曲线
Fig. 14. Measured BireFS variations versus different temperatures.

下式忽略了纵向应变, 仅考虑了温度和气压对布里渊频移和双折射频移的影响:

\[
\Delta \nu_B = C_B^T \Delta T + \Delta \nu_B^T, \\
\Delta \nu_{\text{Bire}} = \Delta \nu_{\text{Bire}}^T + C_{\text{Bire}}^P \Delta P, \tag{8}
\]

其中, \(\Delta \nu_B^T\) 是气压引起的布里渊频移的改变, 由于布里渊散射对气压不敏感, 该项可以忽略不计, 因此可以按通过 BOTDA 获得光纤的温度分布, 然后补偿温度引起的双折射频移 \(\Delta \nu_{\text{Bire}}^T\), 就可以准确获得气压分布。

图 16 所示为基于温度补偿的分布式气压传感测量结果. 将两段 20 cm 长的测试光纤放置在气池中, 气压为 1.05 MPa, 温度为 25 °C; 同时将中间 20 cm 光纤放在低温箱, 温度设定为 -20 °C, 不施加额外气压. 图 16 (a) 是分布式双折射测量结果, 从中可以清楚看出温度造成的串扰; 图 16 (b) 是分布式布里渊频移测量结果, 表明气压对布里渊频移没有影响. 通过这个结果可以获知分布式温度信息; 通过温度补偿后就可以得到分布式气压信息, 如图 16 (c) 所示。

图 16 基于温度补偿的分布式气压传感
(a) 分布式双折射; (b) 分布式布里渊频移 (或温度); (c) 分布式气压
Fig. 16. Temperature-compensated distributed hydrostatic pressure sensing: (a) The measured BireFS of the FUT; (b) the measured BFS of the FUT; (c) the measured hydrostatic pressure after compensating the temperature cross-talk.

3.6 高空间分辨率分布式传感

对于时域布里渊光纤传感, 空间分辨率是由抽运脉冲宽度决定的, 比如 10 ns 的抽运脉冲对应 1 m 的空间分辨率. 通过简单地减小抽运脉冲宽度来提高空间分辨率将会导致布里渊增益谱展宽和信号幅度下降的问题, 尤其是当抽运脉冲宽度小于声子寿命 (10 ns), 这个问题变得愈来愈严重. 差分脉冲对技术可以有效提高空间分辨率, 该方法采用
两个脉宽不同的抽运脉冲，对测量的布里渊信号做差分，通过减小脉宽差来提高空间分辨率，然而由于差分过程会导致信噪比劣化，使该技术目前获得最好的空间分辨率为2 cm\cite{9}。

在传统的时域布里渊光纤传感结构中，决定空间分辨率的抽运脉冲同时参与激发声波场，这是限制空间分辨率的根本因素。然而，由于BDG的产生和探测是两个独立的过程，这就使得可以通过减小探测脉冲宽度来提高空间分辨率，同时可以保证较窄的布里渊增益谱。具体方案如图17所示，两束连续抽运光从光纤的两端注入到保偏光纤的z-plo.，轴里，当两束光的频率差等于布里渊频移时，就会在光纤里激发出BDG，然后在光纤的y-plo.轴里注入一个窄探测脉冲，调节探测光和抽运光之间的频率差至双折射频移，就在BDG上获得一个连续的反射信号，通过扫描两束连续抽运光的频率差就可以获得光纤的布里渊频移谱，该方案中空间分辨率是通过探测脉冲宽度来决定，同时由于使用连续抽运光布里渊频移谱的宽度可以保持在几十MHz。

在文献24中，采用55 ps的探测脉冲，对应于5.5 mm的空间分辨率。图18给出了传感光纤布设图和测量结果，在2 cm位置处是光纤熔节点，由于采用热缩管保护在22 mm长光纤区域上产生一个负应变，同时在10 cm处，有一段8 mm长的光纤被加热到比室温高30 °C形成一个热点。测试系统采样率为40 GSa/s，对应于2.5 mm/点，测量的光纤布里渊频移如图18所示。测量结果清晰地表明该方法可以获得毫米级空间分辨率。采用一只手的五指对一段光纤加热，图19显示了BDG对探测脉冲的反射信号曲线，可以看出采用这个技术可以很清晰地看到五指对光纤加热的效果。

图18 基于BDG的高空间分辨率布里渊传感方案示意图
Fig. 17. Schematic illustration of a high-spatial-resolution distributed Brillouin sensor based on BDG.

在3.7 精密度光谱分析中，很多高精度光纤传感需要高分辨率光谱仪。然而，以体光栅作为分光元件的光谱仪波长分辨率最高仅为几个pm (1000 MHz)，且其分辨率受到光栅刻痕密度及最大光束孔径限制无法进一步提高。与体光栅光谱仪相比，扫描法布里-珀罗干涉仪虽然可以提供较高分辨率，但其自由光谱范围有限。基于相干检测原理的光谱分析仪可以提供高达5 MHz (40 fm)的波长分辨率的光谱测量，然而很难实现宽波段更高分辨率的光谱测量。
我们提出一种基于BDG的超高精度光谱分析技术。之前的研究工作已经证实，由于折射率的变化比较小，光纤中BDG特性与弱光栅条件下的布拉格光纤光栅相符合，即BDG反射谱的FWHM谱宽与光栅长度成反比，表达式如下[20]:

\[
\Delta_{BDG} = \frac{0.443c}{nL},
\]

其中 \(c \) 为真空中光束传播速度; \(n \) 为光纤群折射率; \(L \) 为光栅长度。

因此，通过激发一个较长的BDG，就可以获得超窄带光学滤波器，滤波器的反射中心波长可以通过调整抽运光波长来改变，从而实现光谱分析功能。由于保偏光纤的双折射存在较大的起伏，造成BDG反射谱的非均匀展宽，很难获得较窄的反射带宽，因此我们采用双折射较小的单模光纤来激发BDG。实验上测得不同长度的BDG反射谱宽如图20所示，其中蓝线为弱光纤布拉格光栅的理论曲线。在光纤长度较短(50和100 m)时，BDG反射谱宽与理论值符合较好，而在光纤较长(200, 400和600 m)时，测得BDG反射谱宽都偏离理论值，且随光纤长度增加偏离程度加剧，这个偏离是由于单模光纤存在微小的双折射使BDG反射谱出现不同程度的展宽所致。可以预测，如果能制造出双折射更小的单模光纤，就可以获得更窄的反射谱。其中，最小幅宽发生在400 m，对应的谱宽为0.5 MHz (4 fm)。

图20 布里渊动态光栅反射谱的谱宽(FWHM)随光栅长度的变化关系，其中蓝色曲线是弱布拉格光栅的理论曲线
Fig. 20. Red dots show the measured FWHM bandwidth of BDG versus to the fiber length; blue curve shows the theoretical curve of a uniform weak fiber Bragg grating.

图21 利用不同长度BDG测得频率间隔为1 MHz的三峰光谱 (a) 100 m; (b) 200 m; (c) 400 m; (d) 600 m
Fig. 21. Measured spectra with SMF segments of (a) 100 m, (b) 200 m, (c) 400 m, (d) 600 m. The frequency interval of the multipeak spectrum is 1 MHz.
为了验证该光谱分析系统具有 0.5 MHz (4 fm) 的光谱分析精度，我们通过相位调制产生三峰光谱。将微波信号加载到相位调制器上对入射光进行调制，只要适当控制微波信号功率就可使相位调制器的输出包含多个边带光谱。本实验中采用三等幅线光谱，即包括载波和两个一阶边带，谱线的间隔为 1 MHz。使用不同长度的 BDG (100, 200, 400 和 600 m) 扫描测量的光谱如图 21 所示，可以看出四种光栅长度下三个峰都可以清晰地分辨，其中 L = 400 m 的情况下三个峰分开设得最清晰。

4 结论和展望

由于传感原理的限制，传统分布式布里渊光纤传感在有些性能上很难有进一步提升，比如测量的精度限制在 1 °C 或 20 με，测量的物理量仅限于温度和应变，而且空间分辨率很难进一步提高。基于布里渊动态光栅的新型分布式光纤传感在测量原理和方案上有创新性突破，可以实现更高性能的分布式光纤传感。由于偏振光纤的双折射对温度和应变更加敏感，因此温度和应变传感的测量精度可以提高一个量级以上；测量的物理参数还可以拓展到横向压力、静压力（气压或液压）等其他物理或化学参数；利用布里渊动态光栅的激发和探测分离的特点，可以实现毫米级空间分辨率分布式时域传感。基于布里渊动态光栅的新型多参量分布式光纤传感可以作为一种新的手段对高精度光纤陀螺环进行检测。由于偏振光纤双折射对温度、纵向拉力、横向拉力、横向压力等敏感，因此可以全面反映多种环境参数对光纤环的影响。此外，布里渊动态光栅在多参量光纤传感、全光信号处理、光通信和微波光子学等方面仍然有很大的发展潜力。

作者感谢加拿大渥太华大学鲍晓毅教授和陈亮教授的讨论，作者的博士生姜桃飞、周登望和滕雷在实验上做了很多出色的工作。

参考文献

SPECIAL TOPIC — Optical Fiber Sensor

Principle of Brillouin dynamic grating and its applications in optical fiber sensing*

Dong Yong-Kang† Zhou Deng-Wang Teng Lei Jiang Tao-Fei Chen Xi

(National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China)

(Received 9 October 2016; revised manuscript received 29 November 2016)

Abstract

Brillouin dynamic grating (BDG) has been widely studied since it was proposed for the first time to achieve optical storage in 2007. In general, when two beams of pump light (their frequency difference equal to Brillouin frequency shift of the optical fiber) with the same polarization state are injected into the fiber, the coherent acoustic wave can be excited by the stimulated Brillouin scattering effect, forming a BDG. The BDG in an optical fiber has been widely used in optical fiber sensing, characterization of optical fibers, optical storage, all-optical signal processing, microwave photonics and high-precision spectral analysis due to the advantages of all-optical generation and flexible parameter control. In this paper, we analyze the principle of BDG generation and detection, and its applications in optical fiber sensing. The simultaneous measuring of strain and temperature is achieved within a spatial resolution of 20 cm through measuring Brillouin frequency shift and birefringence-induced frequency shift in a polarization-maintaining fiber. A high-sensitivity distributed transverse load sensor based on BDG with a measurement accuracy as high as 0.8×10^{-3} N/mm is proposed and demonstrated, whose principle is to measure the transverse-load-induced birefringence change through exciting and probing a BDG in an elliptical-core polarization maintaining fiber. On the basis of the above research, a distributed measurement of hydrostatic pressure is demonstrated by using a 4-m photonics crystal fiber with a measurement error less than 0.03 MPa at a 20-cm spatial resolution, while the temperature cross-talk to the hydrostatic pressure sensing can be compensated for through measuring the temperature-induced Brillouin frequency shift changes by using Brillouin optical time-domain analysis. A system based on BDG in polarization maintaining fibers is reported to achieve a spatial resolution below one centimeter, while preserving the full accuracy on the determination of temperature and strain through measuring Brillouin frequency shift. Taking advantage of creating a long BDG in an optical fiber, an ultranarrow bandwidth optical filter is realized by operating a BDG in a single-mode fiber, and the optical spectrometry is performed by sweeping the center wavelength of the BDG-based filter through a swept-tuned laser, where a 4 fm (0.5 MHz) spectral resolution is achieved by operating a BDG in a 400 m single-mode fiber.

Keywords: stimulated Brillouin scattering, Brillouin dynamic grating, optical fiber sensing

PACS: 52.38.Bv, 42.79.Dj, 07.07.Df DOI: 10.7498/aps.66.075201

* Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2013YQ040815), the National Natural Science Foundation of China (Grant Nos. 61575052, 61308004), and the National High Technology Research and Development Program of China (Grant No. 2014AA110401).
† Corresponding author. E-mail: aldendong@gmail.com

075201-13
SPECIAL TOPIC — Optical Fiber Sensor

070601 A modal interferometer based on single mode fiber-hollow core fiber-single mode fiber structure filled with alcohol and magnetic fluid for simultaneously measuring magnetic field and temperature
Zhao Yong Cai Lu Li Xue-Gang Lü Ri-Qing

070702 Phase shift chirped fiber Bragg grating based distributed strain and position sensing
Pei Li Wu Liang-Ying Wang Jian-Shuai Li Jing Ning Ti-Gang

070703 Optical fiber sensing technologies based on femtosecond laser micromachining and sensitive films
Wang Min Liu Fu-Fei Zhou Xian Dai Yu-Tang Yang Ming-Hong

070704 Recent progress in design and fabrication of novel long-period fiber grating
Zhang Wei-Gang Zhang Yan-Xin Geng Peng-Cheng Wang Biao Li Xiao-Lan Wang Song Yan Tie-Yi

070705 Advances of some critical technologies in discrete and distributed optical fiber sensing research
Liu Tie-Gen Yu Zhe Jiang Jun-Feng Liu Kun Zhang Xue-Zhi Ding Zhen-Yang
Wang Shuang Hu Hao-Feng Han Qun Zhang Hong-Xia Li Zhi-Hong

070706 Research on improving detection sensitivity to acoustic based on coherent-OTDR distributed fiber-sensing system
Chen Wen-Jie Jiang Jun-Feng Liu Kun Wang Shuang Ma Zhe Zhang Wan-Chen
Liu Tie-Gen

070707 The mechanism and suppression methods of optical background noise in phase-sensitive optical time domain reflectometry
Zhang Xu-Ping Zhang Yi-Xin Wang Feng Shan Yuan-Yuan Sun Zhen-Hong Hu Yan-Zhu

070708 Research progress of in-fiber Fabry-Perot interferometric temperature and pressure sensors
Li Zi-Liang Liao Chang-Rui Liu Shen Wang Yi-Ping

074202 Optical fiber SPR sensing demodulation algorithm based on all-phase filters
Cao Yu-Zhen Ma Jin-Ying Liu Kun Huang Xiang-Dong Jiang Jun-Feng Wang Tao
Xue Meng Liu Tie-Gen

074205 Fiber-optic ultrasonic sensors and applications
Qiao Xue-Guang Shao Zhi-Hua Bao Wei-Jia Rong Qiang-Zhou

074206 Study on the influence factors of the concentration of heavy metals by spectrophotometry
Bi Wei-Hong Chen Jun-Gang Zhang Sheng Yu Teng-Fei Zhang Yan-Jun Hou Xu-Tao
(Continued)
Recent progress in ultra-long distributed fiber-optic sensing
Rao Yun-Jiang

Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation
He Zu-Yuan Liu Qing-Wen Chen Jia-Geng

Polarization-maintaining microfiber-based evanescent-wave sensors
Li Jie Li Meng-Meng Sun Li-Peng Fan Peng-Cheng Ran Yang Jin Long Guan Bai-Ou

Acoustic emission localization technique based on fiber Bragg grating sensing network and signal feature reconstruction
Zhang Fa-Ye Jiang Ming-Shun Sui Qing-Mei Lü Shan-Shan Jia Lei

Airy fiber: waveguides array coupling based light beam control method
Zhao Hao-Yu Deng Hong-Chang Yuan Li-Bo

Advances in optical fiber photothermal interferometry for gas detection
Miao Yin-Ping Jin Wei Yang Fan Lin Yue-Chuan Tan Yan-Zhen Hoi Lut Ho

Principle of Brillouin dynamic grating and its applications in optical fiber sensing
Dong Yong-Kang Zhou Deng-Wang Teng Lei Jiang Tao-Fei Chen Xi

Positron wave interference and Klein tunnel during the production of pairs in the double-well potential
Wu Guang-Zhi Wang Qiang Zhou Cang-Tao Fu Li-Bin

Influence of the ionospheric sporadic E layer on the performance of quantum satellite communication in the mid latitude region
Nie Min Tang Shou-Rong Yang Guang Zhang Mei-Ling Pei Chang-Xing

Calculation of the equivalent resistance and impedance of the cylindrical network based on recursion-transform method
Tan Zhi-Zhong Zhang Qing-Hua

Phase-field modeling of ferrite morphology in austenite-to-ferrite transformation with considering anisotropic effects
Zhang Jun Chen Wen-Xiong Zheng Cheng-Wu Li Dian-Zhong

Readout method for two-dimensional multi-wire proportional chamber
Wen Zhi-Wen Qi Hui-Rong Wang Yan-Feng Sun Zhi-Jia Zhang Yu-Lian Wang Hai-Yun

Study of the two dimensional imaging performance for the gas electron multiplier using the resistive anode readout method
Ju Xu-Dong Dong Ming-Yi Zhou Chuan-Xing Dong Jing Zhao Yu-Bin Zhang Hong-Yu

Influence of quantum statistical weight on efficiency of electric field ionization of atom
Qi Xiao-Qiu Liu Dong-Li Dai Chang-Jian

(Continued)
A theoretical study on collision mechanisms for low energy electron impact ionization of helium in the perpendicular geometry
Yang Huan Zhang Sui-Meng Xing Ling-Ling Wu Xing-Ju Zhao Min-Fu

ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS

Analysis of electromagnetically induced transparency based on quantum memory of squeezed state of light
Deng Rui-Jie Yan Zhi-Hui Jia Xiao-Jun

Full-vectorial analysis of a silicon-based multimode interference mode-order converter for slot waveguide nanowires
Xiao Jin-Biao Wang Deng-Feng

A method to measure the modulation transfer function of Bayer filter color camera
Duan Ya-Xuan Liu Shang-Kuo Chen Yong-Quan Xue Xun Zhao Jian-Ke Gao Li-Min

A growth study of the Richtmyer-Meshkov flow in the elastoplastic solids under explosive loading
Yin Jian-Wei Pan Hao Wu Zi-Hui Hao Peng-Cheng Hu Xiao-Mian

PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES

Simulations for two colliding plasma bubbles embedded into an external magnetic field
Yuan Xiao-Xia Zhong Jia-Yong

High energetic electron bunches from laser—near critical density layer interaction
Wang Jian Cai Da-Feng Zhao Zong-Qing Gu Yu-Qiu

Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster
Cheng Yu-Guo Xia Guang-Qing

CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES

Influence of γ-ray total dose radiation effect on the tunneling gate current of the uniaxial strained Si nanometer n-channel metal-oxide-semiconductor field-effect transistor
Hao Min-Ru Hu Hui-Yong Liao Chen-Guang Wang Bin Zhao Xiao-Hong Kang Hai-Yang Su Han Zhang He-Ming

Substitutions of dual-ion Al3+/Mo6+ for Zr4+/V5+ in ZrV\textsubscript{2}O\textsubscript{7} for realizing near-zero thermal expansion
Yuan Bao-He Cao Wen-Si Ge Xiang-Hong Cheng Yong-Guang Liu Xian-Sheng Liang Er-Jun

CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES

Buffer layer influence on light absorption of electron intersubband transition in binary energy level systems of quantum wells
Li Qun Qu Yuan Ban Shi-Liang

(Continued)
077302 Novel lateral double-diffused MOSFET with vertical assisted deplete-substrate layer
 Zhao Yi-Han Duan Bao-Xing Yuan Song Lü Jian-Mei Yang Yin-Tang

INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY

078401 Influence of the external condition on the damage process of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse
 Xi Xiao-Wen Chai Chang-Chun Liu Yang Yang Yin-Tang Fan Qing-Yang

GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS

079201 Application of moving cut data-wavelet transformation analysis in dynamic structure mutation testing
 Sun Dong-Yong Zhang Hong-Bo Wang Yi-Min

079401 Research on retarding potential analyzer aboard China seismo-electromagnetic satellite
 Zheng Xiang-Zhi Zhang Ai-Bing Guan Yi-Bing Liu Chao Wang Wen-Jing Tian Zheng
 Kong Ling-Gao Sun Yue-Qiang
公 告

为实现录用稿件的提前在线全文出版，我刊采用单篇论文给定编码的目录方案，编码的设定规则是：期号 + 文章第一个 PACS 代码的前两位数字 + 序号（按同一类代码文章录用时间的先后排序）。

《物理学报》已加入“中国知网”优先数字出版，录用文章将先于印刷版期刊在中国知网 www.cnki.net 在线优先发布，如果作者不愿优先出版可在版权协议里补充说明，如无补充说明，编辑部将视为同意授权。

《物理学报》编辑部